

COURSE SYLLABUS Basic FEM-analys, 7.5 credits

Grundläggande FEM-analys, 7,5 högskolepoäng

Course Code: Confirmed by:	TGFK10 Dean Jun 1, 2019 Director of Education Oct 27, 2021	Education Cycle: Disciplinary domain:	First-cycle level Technology
Valid From: Version:	Jan 1, 2022 2	Subject group: Specialised in: Main field of study:	MT1 G1F Mechanical Engineering

Intended Learning Outcomes (ILO)

After completion of the course the student should:

Knowledge and understanding

- demonstrate comprehension of the basic principals of the finite element method

- display knowledge of the various types of finite elements and material models and their usefulness and suitability in different situations.

Skills and abilities

- demonstrate skills to idealize, implement and solve realistic engineering problems in a

commercial FE-software and interpret the results

- demonstrate the ability to explain the workflow of FE analysis.

Judgement and approach

- demonstrate the ability to assess and estimate the agreement between a theoretical model and a real load-case

- demonstrate the ability to assess the plausibility of a simulation result.

Contents

The aim of the course is to combine theory and application regarding FE-analysis.

The course includes the following elements;

- Deriving the equations for elasticity, force equilibrium, geometric relations, material relations, principal stress.

- Theory on differential equations and methods of discretization.

- Idealization, choice of models, loads, boundary conditions, simplifications, meshing, solution strategies, visualization of results and post-processing.

- Analysis with commercial software packages, heat problems, solid mechanics, contact, large deformations, plasticity, material models, frequency analysis, buckling and dynamic loading.

Type of instruction

Lectures and computer exercises including hand in assignments.

The teaching is conducted in English.

Prerequisites

General entry requirements and completed courses in Multivariable Calculus, 7.5hp and Solid Mechanics, 6hp (or the equivalent).

Examination and grades

The course is graded 5,4,3 or Fail.

Registration of examination:

Name of the Test	Value	Grading
Examination ^I	4 credits	5/4/3/U
Assignment	3.5 credits	U/G

^I Determines the final grade of the course, which is issued only when all course units have been passed.

Course literature

The literature list for the course will be provided 8 weeks before the course starts.

Titel: Engineering Analysis with SolidWorks Simulation 2014 Författare: P. Kurowski Förlag: SDC Publications ISBN: 9781585038589

Compendium PDF and videos

Video-tutorials

Referencelitterature: Title: Concepts and Applications of Finite Element Analysis Author: R.D. Cook, D.S. Malkus, M.E. Plesha, R.J. Witt ISBN: 9780471356059

Compendium in electronic form

Matlab-tutorials