GR&\CE

Golden nugget #8

Date: 2025-11-24

Modelling Production Equipment Requirements using Function-Means Principles to Support Reconfigurable Solutions

Abdul Wahab, Fredrik Elgh, Carin Rösiö, Filip Skärin

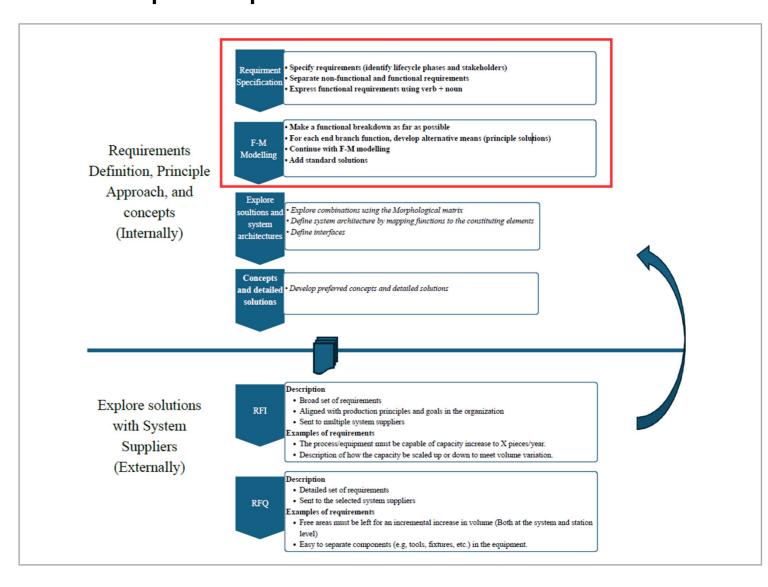
Aim

Modern production systems must handle a high variety of products and frequent changes, requiring flexible, scalable, and modular systems. While product requirements are well-studied, production requirements receive less attention despite their critical role. Current methods lack traceability and adaptability, often relying on supplier quotations. The aim is to develop a structured, holistic approach for production equipment requirements to support long-term reconfigurability.

Current State

- **Reconfigurable Production:** Frequent product changes demand adaptable systems. Current planning methods are costly and disruptive; reconfigurable systems aim to reduce redesign costs and improve sustainability.
- **Requirements Management**: Traditionally, requirements evolve from broad objectives to detailed specifications. In production development, requirements define desired properties for systems, lines, or stations.
- **Challenges**: Diverse stakeholders, evolving needs, and a lack of structured classification lead to ambiguity.
- **Existing Approaches**: Frameworks cluster requirements into functional, constraints, and criteria; database-driven methods enable traceability; model-based approaches link design and production requirements.
- Function-Means Modelling: Describes systems through functions (what) and means (how), enabling systematic reasoning and alternative solution exploration.

Test and Evaluation


- **Reclassification**: Existing requirements were analyzed and rephrased into functional/non-functional categories.
- Functional breakdown: Developed hierarchical structures linking functions to technical means.
- Workshop with experts in the industry:
 - ✓ Functional requirements make sense in early phases; strict requirements apply later.
 - ✓ Progressive specification improves adaptability.
 - ✓ Clear functional requirements reduce miscommunication and impractical solutions

Solution and Effects

A structured approach to **production equipment requirements** using **Function**-Means modelling. Effects:

- Clear distinction between functional and non-functional requirements.
- Improved traceability and adaptability.
- Long-term benefits in flexibility and reuse. Although the initial effort is high, the approach offers significant advantages for sustainable and competitive production systems.

Overall principle

Approach - Main steps

1. Specification of requirements:

By identifying all relevant stakeholders and the lifecycle phases of the production equipment. Analysing requirements from each stakeholder and phase to ensure that a complete system context is represented.

Separation of requirement types:

Distinguish between functional and non-functional requirements.

- Functional requirements describe the intended actions of the equipment (what it
- Non-functional requirements define constraints or qualities (how it should
- 3. Formulation of functional requirements:

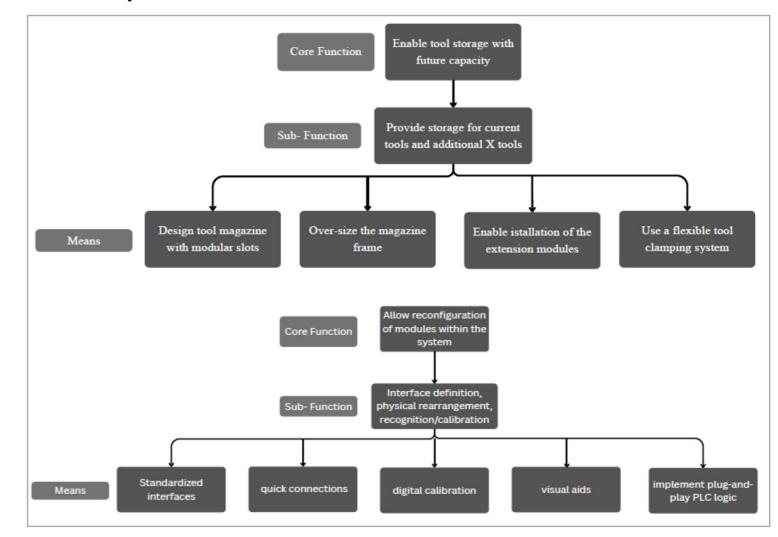
Express each requirement using (verb + noun) syntax. This ensures clarity and consistency in the definition of functions.

4. Functional Decomposition:

Decompose each high-level function into sub-functions until the required level of detail is reached. Continue the breakdown until the function can be directly linked to technical

Exploration of alternative means:

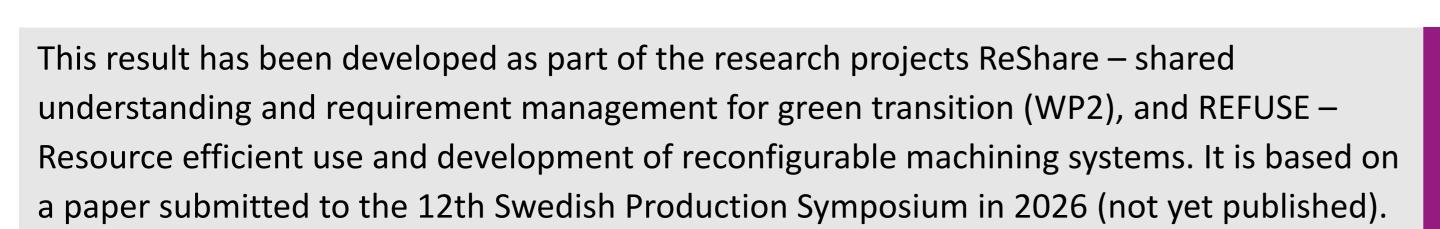
For each function and sub-function, identify and evaluate alternative means of realisation. This step supports flexibility and allows different possibilities before selecting a preferred solution.


6. Function-means modelling:

Establish explicit function-means (F-M) relationships by linking each function to one or more potential technical means that can fulfil it. This enables traceability between requirements and design solutions.

Integration of standard solutions:

Incorporate standard solutions and known technical means into the model where applicable. Standard elements should be prioritised to enhance compatibility, modularity and reusability with the production system.


Examples

