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Abstract 

This paper investigates persistent and transient productive efficiencies of Ethiopian cereal 
farmers for the period 1999-2015. It uses a 4-random error component stochastic frontier panel 
data model to distinguish between time-invariant farm heterogeneity and persistence and 
transient inefficiencies. It compares this model with three other stochastic frontier panel data 
models in which one of the four components is missing. The models allow the estimation of 
persistent and transient efficiencies for each farmer and each time period. The first-order 
estimates of the parameters indicate that agrochemicals, livestock, machinery and labor 
significantly enhanced cereal production. The results of the efficiency estimation indicate that 
the mean and dispersion of efficiencies among farmers differed by the model’s specifications 
and their agro-ecological zones and sub-zones. The results also show that cereal farming was 
technologically regressed at an increasing rate and exhibited increasing returns to scale. The 
results confirm that in general farmers were unable to achieve full productive efficiency and 
efficiency estimates consistently declined over time. The results further show that cereal 
growing farmers’ experienced much more persistent inefficiency problems as compared to 
transient inefficiencies. These findings are important and can be used to initiate agricultural 
policy options which are tailored at enhancing improvements in farming efficiency. The study 
therefore recommends policies that will improve measures that can reduce persistent 
inefficiencies, improve the supply of agricultural inputs and also policies that can meet the 
needs of farmers and which suit their agro-ecological zones. 

Keywords: Farm-heterogeneity, persistent and transient efficiencies, cereal farming, agro-
ecological zones, panel data and Ethiopia. 
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1. INTRODUCTION 

Studying the sources of growth in agricultural production and analyzing farm performance is 
an important step in assessing the developmental role that agriculture plays in developing 
countries. Knowing the levels of efficiency of smallholder farmers has important implications 
in the choice of development strategies, particularly in Sub-Saharan Africa (SSA) where most 
countries derive over 60 per cent of their livelihoods from agriculture and related economic 
activities (Maurice et al., 2014). Agriculture in Ethiopia contributes 40 per cent to its GDP, 
provides employment and livelihood to more than 83 per cent of the population, contribute 85 
per cent to the country’s total export earnings and supplies 73 per cent of the raw materials to 
domestic industries (AfDB, 2011). However, the sector is characterized by rain-fed agriculture, 
frequent droughts, high population pressures and severe land degradation; it is also vulnerable 
to climate change. The sector is compounded by one of the lowest productivity levels in the 
world and is dominated by subsistence smallholders who usually cultivate areas which on 
average are less than 1.5 hectares (FAO, 2009).  

Cereals are the most vital crop in Ethiopia. As a major food crop they comprise about two-third 
of the agricultural share of GDP and one-third of the national GDP. Cereals have a line share 
in the country’s crop farming in terms of production volumes, farm land and farm households. 
According to ECSA (2015) cereals comprised about 79 per cent of the total cropped area, 85 
per cent of the grain crop production and engaged 81 per cent private farmers for the Meher 
season in the 2014-15 production year. Cereal production was marked by remarkable growth 
in Ethiopian crop farming during the last decade. Several of ECSA’s yearly publications 
indicate that cereal production grew consistently from an average of 16 million metric tons 
(MMTs) in 2004-08 to 21.6 MMTs in 2009-14, averaging 18.8 MMTs for a decade with a 
growth rate of 2.74 per cent per annum. However, despite the widely-believed view that 
agriculture plays a central role in Ethiopia’s economic transformation, others maintain that the 
sector did not perform as per expectations. According to Kassahun (2011) the sector is 
characterized with inefficiencies and poor productivity and cereal production showed a steady 
low-growth rate in the last two decades. These observations underline the importance of 
knowing the performance/efficiency levels of cereal farmers in Ethiopia. This information will 
help enhance food security which is an important issue for policymakers in agrarian countries 
like Ethiopia. 

Since the pioneering work of Farrell (1957) various studies have been conducted in efficiency 
literature to examine efficiency in crop farming in different countries using different 
methodologies. Most studies are based on Farrell-type measures of efficiency. However, over 
the years various methods of estimating production frontiers have also been developed so as to 
be able to come up with reliable efficiency measures.  These frontier methods vary from 
econometric (a stochastic frontier analysis-SFA) to non-econometric (data envelopment 
analysis-DEA) methods.  The stochastic production frontier (SPF) model which was introduced 
by Aigner et al. (1977) accommodates different circumstances (Battese and Coelli, 1992, 1995; 
Jondrow et al., 1982; Kumbhakar, 1991; Pitt and Lee, 1981; Schmidt and Sickles, 1984). SFA 
has been extensively used for estimating technical efficiencies. In particular, the SPF model is 
a better fit for an analysis of agricultural efficiencies because of the higher noise as a result of 
the stochastic nature of the production process and yield variability usually experienced in 
agricultural data.  

However, efficiency results from such models are sensitive to the way in which they are 
modeled and interpreted and to the assumptions underlying the model mainly when panel data 
is used (Kumbhakar et al., 2014, 2015). The main reason for the different assumptions is that 
when panel data is available, the productive efficiency of a farm is composed of persistent and 



transient components of efficiency that cannot be captured distinctively by the earlier SPF 
models. In addition, these models do not treat explicitly unobservable individual/farm effects 
in inefficiencies thus generating a mis-specification bias. Further, the effects of these factors 
may be captured by the term ‘inefficiency’ thereby producing biased efficiency results. 
Nevertheless, when panel data started being available, panel data models were developed 
(Colombi et al., 2014; Filippini and Greene, 2016; Kumbhakar et al., 2014; Tsionas and 
Kumbhakar, 2014) which allow separating the two components of inefficiency along with 
disentangled heterogeneity effects.  

Several empirical works have been undertaken to investigate the efficiency of Ethiopia’s crop 
farming using different methodologies. However, thus far there have only been limited 
attempts at studying farming efficiency applying panel data SFP models. Most of the studies 
use simpler model specifications of the type used by Battese and Coelli (1992, 1995). These 
models have inherited the problems raised earlier. Moreover, to the best of the author’s 
knowledge, no study provides separate estimates of the two inefficiency components and these 
studies have also not disentangled heterogeneity effects from inefficiencies. However, 
estimates of persistent inefficiencies provide useful information about farmers because high 
persistent inefficiency scores are indicators of non-competitiveness. This inefficiency may be 
due to the presence of structural problems in the organization of a farm’s production process 
or the presence of systematic shortfalls in managerial capabilities or lasting habits of farmers 
of wasting inputs. The transient part of inefficiency on the other hand may stem from temporal 
behavioral aspects of the management, for example, from a non-optimal use of some inputs 
due to the presence of non-systematic management problems that can be solved in the short 
term. Further, as discussed by Kumbhakar et al. (2015), knowing estimates and information 
about the two components of inefficiency, especially in long panels and their separation from 
heterogeneity effects, are important as they allow farmers to elicit their resource/cost saving 
potential both in the short run and in the long run. Each component provides different 
information with different policy implications for promoting efficiency in the production of 
scarce resources.  

Accordingly, the present study applies a recently proposed 4-component random error panel 
data SPF model following Kumbhakar et al., (2014) to estimate persistent and transient 
efficiencies by disentangling them from unobserved farm-heterogeneity effects for smallholder 
cereal farmers in Ethiopia using a partially balanced panel dataset. It also compares the results 
from this model with the other three SPF models in which one of the four components is 
missing. This study contributes to existing literature as it provides one of the first empirical 
analyses to show the presence of persistent and transient inefficiencies using a novel 
econometric approach -- a 4-component random-error panel data SPF model -- for Ethiopia’s 
smallholder cereal farmers. Second, to the best of the author's knowledge, this is the first panel 
data analysis which addresses the problems of individual and farm heterogeneities in measuring 
production efficiencies in Ethiopia’s crop farming that disentangles farm heterogeneity from 
inefficiency effects. Thus, it provides valuable information on persistence and transient 
inefficiencies and farm heterogeneity effects. Third, it has an analysis based on agro-ecological 
zones (AEZs) which considers cereal farming at the farm-household level and thus it also 
considers output. Therefore, it is replicable elsewhere in the country, between regions and 
within AEZs.  

The rest of the paper is organized as follows.  Section 2 presents the method and data used; it 
also gives the specifications of the panel data stochastic frontier models, the estimation 
procedure and the dataset used in the analysis. Section 3 gives estimations and results and 
discusses the empirical findings. Section 4 gives a summary, conclusions and policy 
recommendations.  



 

2. METHOD AND DATA for THE STUDY 

2.1. A partial review of panel data stochastic frontier models  

Since their inception SPF models have been used for measuring and comparing the 
performance of individual production units within a geographic location, an industry or in the 
agricultural sector. Extensive research in this field has resulted in the rapid development of 
econometric techniques concerning specifications, estimations and testing issues of the models. 
These techniques have developed rapidly and have been implemented in many areas mostly 
using cross-sectional and panel data. The use of a panel data model in estimating producers’ 
efficiencies helps avoid some of the problems related to distributional assumptions encountered 
in a cross-section approach. According to Schmidt and Sickles (1984) when inefficiency is 
time-invariant, panel data enables one to estimate inefficiency consistently without 
distributional assumptions. Panels also have the advantage of separating individual and time-
specific effects from the combined effect (Heshmati et al., 1995). Further, panel data enables 
one to control individual heterogeneity effects, it has greater variability, less collinearity 
between variables, a higher degree of freedom and more efficiency; panel data is also more 
capable of identifying and measuring the effects that are not detected in cross-sectional or time-
series data.  

A panel data SPF model that was introduced in the early 1980s assumed inefficiencies to be 
individual-specific and time-invariant. That is, inefficiency levels may be different for different 
producers but they did not change over time. This means that an inefficient producer does not 
learn how to improve his performance over time. This might be the case in some situations 
where, for example, the soil quality is poor and a farm lacks water sources for irrigation, or 
inefficiencies are associated with managerial abilities and there is no change in management 
and production technology for a farm during the period of the study (Kumbhakar et al., 2014, 
2015). This seems unrealistic particularly when production competition is considered.  

Another drawback of this approach is that farm heterogeneity cannot be distinguished from 
inefficiencies; all time-invariant heterogeneity is confounded by inefficiencies. This raises key 
questions on whether inefficiency has been persistent over time or is it in time-varying units? 
And whether time-invariant individual effects represent persistent inefficiencies, or the effects 
are independent of inefficiencies and capture persistent farm heterogeneity. Related to these 
questions and as discussed in Colombi et al. (2014) and Kumbhakar et al. (2014, 2015), several 
panel data SPF models were developed to include both time-invariant and time-varying 
inefficiency effects. Some of these models were developed based on the assumption that all the 
time-invariant (fixed or random) effects were persistent inefficiencies (for example, Pitt and 
Lee, 1981; Schmidt and Sickles, 1984). Others were developed based on the assumption that 
the time-variant effects were transient inefficiencies without considering farm effects (for 
example, Battese and Coelli, 1992; Lee and Schmidt, 1993) and some others separated farm 
effects from transient inefficiencies without considering the possibility of persistent 
inefficiencies (for example, Greene, 2005a, 2005b). The models proposed by Kumbhakar 
(1991) and Kumbhakar and Heshmati (1995) are in between. These models treat farm effects 
as persistent inefficiencies and include another component to capture transient inefficiencies.  

Some recently developed panel models provide information on whether a farm is characterized 
by the presence of both types of inefficiencies and are concerned with the separation of 
inefficiencies from heterogeneity effects (Colombi et al., 2014; Filippini and Greene, 2016; 
Kumbhakar et al., 2014; Tsionas and Kumbhakar, 2014) that may overcome some of the 
limitations of the earlier approaches. These recently developed models have been proposed 



with an error structure that is decomposed into four elements thus making it possible to account 
separately for the usual noise in the data, farmer/farm unobserved time-invariant heterogeneity 
and transient/short-run and persistent/long-run inefficiency components. Herein, transient 
inefficiency is interpreted as short-term production inefficiency associated with changes in 
managerial skills or disruptions resulting from the adoption of new technologies. By contrast, 
persistent inefficiencies are long-run production inefficiencies due to structural or institutional 
factors which evolve slowly over time. While long-run inefficiencies and farmer/farm 
unobserved-heterogeneity are both time-invariant effects, a major difference between them is 
that the latter is always beyond the control of the farmers (for example, geological/locational 
make-up of a farmer/farm and other physical features). Thus, having estimates and information 
about persistence and transient components of inefficiency and separating them from 
heterogeneity effects are important. Each component provides different information and has 
different policy implications.   

In line with Heshmati et al. (2016) and Rashidghalam et al., (2016) this paper uses four 
alternative SPF panel data models for estimating and analyzing persistent and transient 
efficiencies disentangling them from time-invariant farm effects. The first model is the basic 
version of panel data models: the fixed-effects model by Schmidt and Sickles (1984) which 
assumes inefficiency effects to be time-invariant and individual specific. It thus offers estimates 
of persistent/long-run inefficiencies. The second model is a true fixed-effects panel data model 
proposed by Greene (2005a). This separates transient/short-run inefficiencies from persistent 
individual effects. The third model is a 3-component random error panel data model 
(Kumbhakar and Heshmati, 1995) that gives estimates of persistent and transient inefficiencies 
without accounting for farm heterogeneity. The fourth model is a recently developed 4-
component error panel data model by Kumbhakar et al. (2014) that provides estimates of 
persistent and transient inefficiencies separating them from time-invariant farm effects and 
noise. 

 

2.2 Model specifications and the estimation procedure 

Consider the traditional panel data SPF model: 
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where, Ni ,...,2,1 is an index for farmer i and Tt ,...,2,1 , represent time. The variable ity

represents the output of a farmer; itx is row vector of input variables of a farmer plus other 

exogenous/control variables such as time trend (and depending on the specification of the 
production technology, squares of the inputs and their cross-product terms). The parameter 0  

is a common intercept;  is a vector of unknown parameters to be estimated; itit and  are the 

idiosyncratic and inefficiency components of the ‘composed error term’, it and 0it  is a 

transient inefficiency term of individual i which is assumed to be identically independently 

distributed (i.i.d.) as half normal, that is, ),0(...~, 2


  Ndiiwhere ititit .Similarly, it is a 

random noise assumed to be ),0(...~ 2
 Ndiiit .  

 
2.2.1 Model specification  
In this section, we present the specifications of the four SPF panel data models used in this 
study. The specification of all models is based on the formulation of the model given in Eqn. 



1. Karagiannis and Tzouvelekas (2009) and Rashidghalam et al. (2016) provide a comparison 
of alternative specifications of inefficiency based on the same data. In this study, we focus on 
four main ones. 

 

Model 1: Individual effects treated as long-run inefficiencies 

To specify a model with time-invariant inefficiency effects we treat the term it in Eqn. 1 as a 

time-invariant term iu to represent long-run inefficiency to obtain: 

0;);()2( 0  iiititit uuxfy   

This model utilizes the panel feature of the data via iu  and it can be estimated when the 

inefficiency component iu  is a fixed parameter by the fixed-effect model (FE-model) or when 

iu  is treated as a random variable by the random-effect model, assuming iit uand are 

homoscedastic. This model has been criticized for its assumption about inefficiency as time-
invariance inefficiency seems to be unrealistic, especially for a long panel dataset because this 
inefficiency term may capture some time-invariant farm attributes such as individual instinctive 
abilities and other persistent farm heterogeneities that are unrelated to the production process 
but which affect the output. Thus, these factors may be confounded with inefficiency and the 
model is miss-specified and tends to over-estimate inefficiency levels. 

 

Model 2: Individual effects treated as heterogeneity 

To overcome the drawbacks of the FE-model, Greene (2005a) proposed an extension of this 
model called the ‘true’ fixed-effects (TFE) model. The purpose of this model is to treat time-
invariant farm heterogeneity and transient inefficiency effects separately. Hence, treating the 
inefficiency term it  as a time-varying term in Eqn. 1 but splitting the error term as: itiit   ; 

we obtain:       

ititiitit xfy   );()3( 0  

where i  is random-effects to capture any time-invariant farm heterogeneity, not inefficiency;

it represents transient inefficiency and itv is a random shock with the following distribution: 

 

If in this model if we treat μi as a fixed-parameter that does not capture inefficiency then the 
model becomes a true fixed-effects model (TFE-model).  

The TFE-model allows inefficiency to be time-variant and controls for farm heterogeneity for 
it to be captured by a farm specific intercept. However, the model views individual effects as 
being different from inefficiency and assumes that inefficiency terms are always transient. Thus, 
it fails to capture persistent inefficiencies. Therefore, the individual effects cannot be 
distinguished from transient inefficiencies and the persistent component of inefficiency is 
completely absorbed in a farm’s constant term. Hence, all time-invariant effects that are not 
necessarily inefficient are included as inefficiencies and therefore it̂ might be picking up farm 

heterogeneity in addition to or even instead of inefficiencies (Kumbhakar and Heshmati, 1995). 
Consequently, the model is miss-specified and tends to under-estimate transient inefficiency 
levels and can hence over-estimate efficiency scores. 
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Model 3: Individual effects treated as persistent inefficiencies 

To overcome the downward bias inefficiency estimation of the TFE-model and its ignorance 
about the persistent inefficiency component, Kumbhakar and Heshmati (1995) proposed a 
model that treats individual effects as persistent inefficiencies decomposing inefficiencies into 
persistence and transient components.  

To formalize this model we split the inefficiency term, it in Eqn. 1 as: itiit u  to obtain:   

itiititit

itiitititit

ititit

uxfy

thatsou

xfy











);(

;

);()5(

0

0

   

 This model (KH-model) split the error term into three components where it  captures a 

random shock; 0i captures individual effects as persistent inefficiency; and 0itu  

captures the transient inefficiency component. Unlike the TFE-model, the KH-model does not 
consider any time-invariant farm effects and hence confounds these effects in an individual’s 
persistent inefficiencies. Consequently, the model is again miss-specified and is likely to 
produce persistent inefficiency estimates with an upward bias.   

 

Model 4: Separation of individual heterogeneity from persistent inefficiencies 

To overcome the limitations of these three models, Colombi et al. (2014), Kumbhakar et al., 
(2014) and Tsionas and Kumbhakar (2014) proposed a model that split the error term into four 
components -- persistent and transient inefficiencies, random farm effects and noise. Hence, 
we specify a model that distinguishes between persistent and transient inefficiencies and time-
invariant inefficiencies from farm effects (Kumbhakar et al., 2014) using the decompositions 

itiititiit andu   in Eqn. 1 to obtain:   
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This model (KLH-model) decomposes the error term, it into four components as: 

;itiitiit u  where μi is a random farm effect that captures time-invariant farm’s 

heterogeneity (for example, oil quality) which has to be disentangled from persistent individual 
effects (for example, a farmer’s skills); it is the idiosyncratic random component; 0i
captures persistent inefficiencies; and 0itu captures transient inefficiency effects. Without i
the Eqn. 6 is reduced to the KH-model and without i  it is the same as the TFE-model.  

 

2.2.2 Models’ estimation procedures 

To estimate the FE-model we reformulate Eqn. 2 to obtain the following estimable model: 
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Eqn. 7 is like a standard fixed-effects panel data model (Schmidt and Sickles, 1984), where 

ii u 0 is farm specific intercepts. Here ii andu  are individual effects and are assumed 

to be fixed-parameters to be estimated along with the parameter vector  . One can apply the 



standard fixed-effect panel data estimation method to obtain i̂  and the following 

transformation to obtain an estimate for :iu    

  Niu iiii ,...,1,0ˆˆmaxˆ)8(    

and obtain farm specific technical efficiency estimate  ii uExpTE ˆ . This formulation 

implicitly assumes that the most efficient unit in the sample is 100 per cent efficient so that 
inefficiencies for other farmers are relative to the best farmer.  

We estimate the TFE-model by making a distributional assumption on the random error. 
Different estimation methods have been proposed for estimating the KH and KLH-models. 
Colombi et al. (2014) used a single stage maximum likelihood estimation (MLE) method based 
on the distributional assumptions of the 4-error components; Kumbhakar and Heshmati (1995) 
and Kumbhakar et al. (2014) used a multi-step procedure; and Filippini and Greene (2016) 
used the simulated ML approach. However, due to its simplicity we used the multi-step 
estimation procedure suggested by Kumbhakar et al. (2014) for the KH and KLH-models. The 
multi-step procedure has the advantage of avoiding strong distributional assumptions by 
estimating the model using the ML method. In what follows we present the multi-step approach 
for the two models. 
The KH-model can be estimated in four steps. The steps are described in Kumbhakar et al. 
(2015). For this we rewrite the model in Eqn. 5 as: 
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In this case the error component it has zero mean and constant variance. Thus, the model in 

Eqn. 9 which fits the standard panel data model with individual effects can be estimated either 
by the least squares dummy variable (LSDV) or by the generalized least squares method. Under 
the LSDV framework, using a multi-step procedure, the model can be estimated in four steps 
as: In step 1, we estimate Eqn. 9 using the standard within fixed-effects panel data model to 
obtain consistent estimates of .  In step 2, we estimate persistent inefficiencies, in which we 

obtain their components i̂ which can be used to estimate persistent technical efficiency 

)ˆexp( iPTE  .  In step 3, using the standard half-normal SF model we estimate 0 and the 

parameter associated with itit uand . Finally, in step 4, we use the JLMS technique to estimate 

the residual inefficiency itu . This procedure predicts the residual inefficiency component itû

which can be used for estimating residual technical efficiency )ˆexp( itit uRTE  . Finally the 

overall technical efficiency (OTE) is obtained from the product of persistent and residual 
efficiencies, that is, itiit RTEPTEOTE   

To estimate the KLH-model, we reformulate Eqn. 6 as: 
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With this specification iti and  have zero mean and constant variance since Eqn. 10 is a 

familiar panel data model. Like in the previous case we use the 4-step approach to estimate the 

KLH-model. In the first step, the standard fixed-effect panel regression is used to estimate ̂ . 

This procedure also gives predicted values of iti and  , denoted by *ε̂andα̂ iti . In step 2, the 



time-varying technical efficiency is estimated using the predicted value of *
it from the previous 

step using the standard stochastic frontier technique. This procedure predicts the time-varying 

residual technical inefficiency which can be used to estimate )exp( *
ititit uRTE  . In step 3 we 

estimate i , following a procedure similar to the one in step 2. For this we use the standard 

pooled half-normal stochastic frontier model to obtain estimates of the persistent inefficiency 
component i . Then PTE can be estimated using the formulae )ˆexp( iiPTE   and 

itiit RTEPTEOTE   (see Table 1). 

 

 Table 1. Summary of main characteristics and assumptions of the four models applied 

 FE-model TFE-model KH-model KLH-model 

Farm-specific  
effects αi 

Fixed Fixed Fixed Fixed 

 
Full 
composed 
error term 

ititit    

iitit u   ititiit    itiitit u   itiitiit uv    

),0(~ 2
 Nit

),0(~ 2
ui Nu 

 ),0(~

),,0(~

,),0(~

2

2

2





 

Nand

Nv

N

i

vit

it


 

),0(~

),,0(~

,),0(~

2

2

2













Nand

N

Nu

i

it

uit

 ),0(~

),0(~

),,0(~

,),0(~

2

2

2

2

















N

andN

Nv

Nu

i

i

vit

uit

 

Persistent 
inefficiency 
estimator 

)( itiuE   None  )( itiE 
 

)( itiE   

Transient 
inefficiency 
estimator 

None  )( ititE   )( ititE 
 

)( ititE   

Estimation 
Method 

COLS ML ML ML 

Note: FE-the Fixed Effect Model, TFE-the True-Fixed Effect Model, KH-the Kumbhakar and Heshmati (1995) 
Model, KLH- the Kumbhakar, Lien and Hardaker (2014) model; Corrected Ordinary Least Squares (COLS); 
ML-Maximum Likelihood. 

 

2.3 The Empirical Model  

The production function );( itxf  in models 1 to 4 is specified using a translog (TL) functional 

form because of its flexibility (Christensen et al., 1973). Hence, assuming a TL with the time-
trend representation we estimate a stochastic frontier panel data model using the following 
specification:  
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where ityln is the natural logarithm of output measure of farmer i; Ni ,...,2,1 ; in time period 

t, Tt ,...,2,1 ; and itXln is a vector of natural logarithm of j, Jj ,...,2,1 inputs. The 

explanatory variable T is a time trend and is a proxy for the exogenous rate of technical change, 
while all other variables (  and,, ) maintain their previous definitions as in Eqn. 1.  

 

Elasticities (E), technical changes (TC) and returns to scale (RTS) 

Since the coefficients of the TL production function do not have direct interpretations, we 
computed elasticities of output with respect to each input. As all the variables are expressed in 
their logarithms their elasticities can be simply obtained from a partial differentiation of the 
production function with respect to appropriate inputs based on:  

 

the rate of TC and RTS is obtained from:  









J

j
jitit

J

j
jitjttttt

t

it
it ERTSandXT

T

y
TC

11

ln
ln

ln
)13(  . 

Elasticity measures the responsiveness of output to a 1 per cent change in the jth input used by 
farmer i at time t. TC is the percentage change in output due to an increment of time measured 
in years for unchanged input use. RTS measures the percentage change in output in response 
to a proportional 1 per cent increase in all inputs simultaneously. Technology exhibits 
increasing, constant or decreasing RTS respectively if RTS is greater than, equal to or less than 
one. All input elasticities, RTS and TC are computed at every data point.  

 

2.4. Data and Variables in the Study 

The data source for our study was the Ethiopian Rural Household Survey collected from 
randomly selected farm households in rural Ethiopia in 1994-2015. It includes farm production 
and economic data collected at 5 years’ intervals from local Farmers Associations (FAs) that 
were selected to represent the country’s diverse farming systems. Originally, the first four 
waves of the survey were conducted in collaboration with the Department of Economics, Addis 
Ababa University (AAU) and the International Food Policy Research Institute (IFPRI). The 
last round was extended forming a sub-sample from the original respondents covering eight 
FAs following a similar strategy. This comprised of 503 farm households compiled by the 
researcher in 2015 in collaboration with AAU and the Environment for Development (EfD) at 
the University of Gothenburg, Sweden. Consequently, this study employs data from the last 
four rounds (1999, 2004, 2009 and 2015) covering eight Fas thus forming a partially balanced 
panel of 446 households and 1,648 observations. These four rounds were selected to allow for 
even time spacing and covering approximately similar time frames. The 1994 survey was 
excluded as it misses most of the important variables for the analysis. 

We used aggregated cereal output measured in Ethiopian birr (ETB) as a dependent variable 
using the following explanatory variables: labor employed measured in man-day units 
(MDUs); cereal sown farmlands in hectares; amount of fertilizers used in kilograms; 
agricultural machinery implements in ETB; and livestock ownership in tropical livestock units 
(TLUs) as a proxy for wealth and livestock asset endowments. Agrochemicals in ETB 
including pesticides, herbicides and insecticides and oxen as animal draft power in number of 
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the oxen owned as these are mainly used in traditional farming during land preparation and 
harvesting periods. It also uses a time trend and its square. The time trend captures the shift in 
production over time representing technical changes, while the squared trend captures the non-
linear shift in the production function over time. All monetarily measured variables are 
transformed to fixed ETB prices obtained by deflating to 1999 prices. The input variable seeds 
was excluded from the analysis due to lack of information on it. 

 

2.5 Descriptive Summary  

Table 2 presents the summary statistics of the data (mean and dispersion) and the evolution of 
cereal production output and input variables over time. As shown in the table, mean cereal 
production was about 1,952 kg ranging between 34 kg and 51,100 kg per farm household 
during the study period. Evolution of cereal production over time reveals that production 
increased over the period as the mean of production was about 1,260 kg in 1999 which rose 
steadily to 3,020 kg in the 2015 production year. For this production the farmers cultivated 
cereals on average on about 1.8 hectares and used 342.6 MDUs of labor. Fertilizer application 
was minimal with an average of 116.1 kg per farm household while the expenses on 
agrochemicals were on average 133.9 ETB. The farmers spent 336.27 ETB for agricultural 
machinery used per farm household. Average livestock ownership was 6.5tropical livestock 
units (TLUs) and average oxen ownership was around 1.8 oxen meaning that farms on average 
owned two oxen ranging from no ox to nine oxen per farm household. 

 

Table 2. Summary statistics of input and output variables (NT=1,648)  

Variable Mean Std. Dev. Min Max 
Output(kg) 1952.25 2681.81 34.00 51100.00 
Fertilizers(kg)  116.09 138.86 0.00 1400.00 
Agrochemicals(ETB) 133.90 447.17 0.00 8560.00 
Labor(DMU)  342.62 714.21 3.00 8333.88 
Machinery(ETB) 336.27 1775.88 0.00 36540.00 
Livestock(TLUs) 6.49 5.93 0.00 58.80 
Number of oxen 1.75 1.35 0.00 9.00 
Planted-area (Hec.) 1.75 1.28 0.02 11.00 

        Source: Author’s computation. 

 

3. EMPIRICAL RESULTS AND DISCUSSION 

3. 1. An Analysis of the results of production frontier estimates and elasticities 

Table 3 presents estimates of the translog production frontier parameters obtained from the 
econometric estimation of each of the alternative models. As shown in the table most of the 
parameter estimates from the models were significantly different from zero at the 5 per cent 
level or lower. For all the models the estimated first-order parameters (βi) had the anticipated 
(positive) sign and magnitude (between zero and one), whereas the bordered Hessian matrix of 
the first and second-order partial derivatives was negative and semi-definite indicating that all 
regularity conditions of the production economic theory which require that the partial output 
elasticities be non-negative and less than one (that is, positive and diminishing marginal 
products) were valid at the point of approximation. Thus, the results of all the four models 



behaved well in a production frontier function. The estimates of the first-order parameters with 
respect to agrochemicals, labor, machinery, oxen and livestock were all statistically significant. 
This suggests that cereal production in the study area was most responsive to these inputs. 
Hence, an increase in agrochemicals, machinery, labor use and more livestock units that may 
include plowing oxen enhanced cereal production.  

Estimates of the time-trend and its squared term were significantly positive at the 1 per cent 
level showing that cereal farmers experienced technical changes (TC) which regressed with an 
increasing rate over the sample period. Estimates of time interacted with farmland area were 
positive implying that TC was land using. The coefficients of time interactions with other 
inputs were negative and significant implying factor using TC for these inputs and suggesting 
input saving TC. Estimates of time interaction with agrochemicals were not significant 
implying technical neutrality with respect to this input. However, the overall TC was not 
neutral because some production factors significantly changed over time. 

 

 Production elasticities, returns to scale and technical changes 

Average estimates of production input elasticities estimated at the mean of the data, computed 
from Eqn. 12, returns to scale and technical changes are presented in Table 4. Estimates of 
production elasticities with respect to all inputs evaluated at the mean of the data were 
significantly different from zero. All point elasticity estimates across models were positive, 
indicating positive marginal products of inputs. The positive sign of the elasticities further 
indicates that lack of these inputs hampered agricultural activities and hence output levels. 
Estimates of production elasticities indicate that each input contributed significantly to cereal 
production, however, the magnitude of the elasticities differed across models. For instance, if 
a farmer increased the number of the oxen by 1 per cent, keeping other inputs constant this 
increased cereal production by 0.450 per cent (FE, KH and KLH-models) and 0.465 per cent 
(TFE-model). Similarly, an increase in livestock rearing by 1 per cent increased production by 
0.274 per cent in the TFE-model and 0.240 per cent in the other models. An increase in 
agrochemicals by 1 per cent increased production by 0.064 per cent  for the TFE-model and 
0.068 per cent in the other models and increasing cultivated land area by 1 per cent increased 
production by 0.276 per cent in the TFE-model and 0.333 per cent in the other models. 
Moreover, as can be observed from Table 4, in almost all the models for all productive inputs, 
the elasticities with respect to oxen were the highest, elasticities with respect to cultivated land 
size were the second highest and those for fertilizers were the least. These indicate that more 
oxen contributed the most to cereal production, followed by land. The least contribution was 
of fertilizers. The results suggest that traction animal power contributes to higher levels in 
cereal farming but this may be because animal traction power is a dominant form of land 
preparation under conventional farming.  Our results are similar to what other studies have 
found in Ethiopia (Gebreegziabher et al., 2005).  

 

Table 3. Estimates of the parameters using the TL production frontier across models 
(NT=1,648)  

 Variables 
FE Model TFE Model KH & KLH Models 

Estimate S. E Estimate S. E Estimate S. E 
Fertilizer βx1 0.063 0.080 0.089 0.067 0.063 0.080 

Agrochemicals βx2 0.108* 0.059 0.098** 0.050 0.108* 0.059 

Labor βx3 0.350*** 0.114 0.341*** 0.095 0.350*** 0.114 

Machinery βx4 0.289*** 0.077 0.287*** 0.064 0.289*** 0.077 

Livestock βx5 0.194 0.126 0.223** 0.106 0.194 0.126 



Oxen βx6 0.382 0.292 0.391* 0.244 0.382 0.292 

Area  βx7 0.069 0.133 0.014 0.112 0.069 0.133 

Fertilizer*Fertilizer βx11 -0.002 0.018 0.003 0.015 -0.002 0.018 

Agrochemicals*Agrochemicals βx22 -0.005 0.014 -0.002 0.012 -0.005 0.014 

Labor*Labor βx33 0.035 0.023 0.030 0.019 0.035 0.023 

Machinery*Machinery βx44 0.058*** 0.016 0.061*** 0.013 0.058*** 0.016 

Livestock*Livestock βx55 0.121*** 0.028 0.125 0.024 0.121*** 0.028 

Oxen*Oxen βx66 -0.224 0.223 -0.214 0.186 -0.224 0.223 

Area*Area  βx77 -0.118*** 0.026 -0.125*** 0.022 -0.118*** 0.026 

Fertilizer*Agrochemicals βx12 -0.004 0.013 -0.008 0.011 -0.004 0.013 

Fertilizer*Labor βx13 0.019 0.025 0.013 0.021 0.019 0.025 

Fertilizer*Machinery βx14 -0.002 0.015 -0.003 0.012 -0.002 0.015 

Fertilizer*Livestock βx15 -0.093*** 0.029 -0.099*** 0.025 -0.093*** 0.029 

Fertilizer*Oxen βx16 0.102 0.066 0.111** 0.056 0.102 0.066 

Fertilizer*Area βx17 0.111*** 0.035 0.126*** 0.029 0.111*** 0.035 
Agrochemicals*Labor  βx23 -0.012 0.02 -0.007 0.016 -0.012 0.02 
Agrochemicals*Machinery βx24 0.000 0.013 0.001 0.011 0.000 0.013 
Agrochemicals*Livestock βx25 0.068*** 0.028 0.071*** 0.024 0.068*** 0.028 

Agrochemicals*Oxen βx26 -0.108** 0.054 -0.110** 0.045 -0.108** 0.054 

Agrochemicals*Area βx27 -0.007 0.028 -0.002 0.023 -0.007 0.028 
Labor*Machinery βx34 0.068*** 0.019 0.070*** 0.016 0.068*** 0.019 

Labor*Livestock βx35 0.051 0.046 0.045 0.038 0.051 0.046 

Labor*Oxen βx36 -0.103 0.096 -0.098 0.08 -0.103 0.096 

Labor*Area βx37 -0.043 0.043 -0.036 0.036 -0.043 0.043 

Machinery*Livestock  βx45 -0.003 0.028 0.002 0.024 -0.003 0.028 

Machinery*Oxen βx46 0.021 0.054 0.018 0.045 0.021 0.054 
Machinery*Area βx47 -0.042 0.027 -0.042* 0.023 -0.042 0.027 

Livestock*Oxen βx56 -0.190 0.129 -0.206** 0.108 -0.190 0.129 

Livestock*Area βx57 -0.193*** 0.07 -0.194*** 0.058 -0.193*** 0.07 
Oxen*Area  βx67 0.333*** 0.144 0.329*** 0.12 0.333*** 0.144 

Time*Fertilizer βx1t -0.024* 0.014 -0.026** 0.012 -0.024* 0.014 

Time*Agrochemicals βx2t -0.010 0.011 -0.011 0.009 -0.010 0.011 

Time*Lobar βx3t -0.115*** 0.022 -0.119*** 0.018 -0.115*** 0.022 

Time*Machinery βx4t -0.029* 0.018 -0.037** 0.015 -0.029* 0.018 

Time*Livestock βx5t -0.049* 0.026 -0.051** 0.022 -0.049* 0.026 
Time*Oxen βx6t 0.086* 0.052 0.073* 0.044 0.086* 0.052 
Time*Area βx7t 0.114*** 0.031 0.118*** 0.026 0.114*** 0.031
Time(1=1999,…,4=2015) βt 0.688*** 0.163 0.666*** 0.139 0.688*** 0.163 
Time*Time βtt 0.355*** 0.052 0.394*** 0.047 0.355*** 0.052 
Constant  β0 4.683*** 0.396 4.155*** 0.457 4.683*** 0.396 
σu  0.512 5.503** 2.933 0.512 
σv  0.748 -0.954*** 0.038 0.748 
γ  0.319 0.385*** 0.015 0.319 
R2  0.758 0.758 
LogL  -1564.860 -1563.252 

Notes: *: p<0.05; **: p<0.01; ***: p<0.001. 
Subscripts on βx coefficients refer to inputs: 1 = Fertilizers; 2 = Agrochemicals; 3 = Labor; 4 = Machinery; 5 = 

Livestock; 6 = Number of oxen; and 7 = Planted area. 

 

We also calculated returns to scale (RTS) and technical changes (TC), computed from Eqn. 13 
in all the four models and used the results for a robustness check. Accordingly, as can be seen 
from Table 4 estimates of returns to scale (RTS) evaluated at the mean data point were similar 



across models; however, their magnitudes are model specific. Specifically, RTS was 1.538 in 
the TFE-model and 1.572 in other models. Hence, in general the results suggest that cereal 
growing farmers in the sample exhibited increasing returns to scale in all the models. Our 
empirical results indicate that all models predicted similar patterns of technical changes. All 
alternative estimators revealed positive TC estimates which are progressive at an increasing 
rate with the time pattern being model specific. In particular, TC estimates clearly indicate 
technical regression at an increasing rate of 0.901 in the TFE-model and 0.880 in the other 
models. This is a result of an increase in farming skills, improved seed quality and skills in the 
use of machinery and fertilizers. 

 

Table 4. Mean Input Elasticities, Returns to Scale (RTS) and technical Changes (TC) across 
Models 

Input FE Model TFE Model KH & KLH Models 
Fertilizer 0.004 0.012 0.004 
Agrochemicals 0.068 0.064 0.068 
Labor 0.224 0.191 0.224 
Machinery 0.254 0.256 0.254 

Livestock 0.240 0.274 0.240 
Oxen 0.450 0.465 0.450 
Planted-area 0.333 0.276 0.333 
RTS 1.572 1.538 1.572 
TC 0.876 0.902 0.876 

Source: Author’s computation. 

 

3.2. Technical efficiency 

Table 5 gives the distribution of persistent and transient efficiency scores obtained from 
alternative models. The FE-model produces values of technical efficiency that are time-
invariant and therefore should reflect persistent efficiencies. Results from the KH and KLH-
models provide persistent as well as transient technical efficiency components. The TFE-model, 
which does not include persistent efficiencies, produces values that are time-variant and 
therefore reflects the overall (transient) efficiencies. In general, the results illustrate significant 
variations in efficiency estimations across models and that the efficiency scores are sensitive 
to the model’s specifications.  

 

3.2.1 Time-invariant/persistent technical efficiencies 

As shown in Table 5, mean persistent technical efficiencies in the FE and KH-models were 
0.30 with larger dispersions. Contrarily, mean persistent efficiency captured by the KLH-model 
was 0.79 which is significantly higher than the mean of FE and KH-models with much lower 
efficiency variations. Hence, comparing efficiency estimates across models the results obtained 
by the FE and KH-models do not provide precise information on the level of persistent 
efficiencies. The reason for this is that these models do not separate unobserved persistent farm-
heterogeneity from inefficiencies and parts of time-invariant farm effects can be confounded 
in persistent inefficiencies. Thus, the models tend to over-estimate inefficiency scores, hence 
generating lower estimates of persistent efficiencies.  



Distribution of persistent efficiencies further shows that almost 58 per cent of the farmers were 
operating below the mean score in the KH-model, as against 44 per cent in the KLH-model. In 
the KLH measure, 94 per cent of the farmers had persistent efficiency scores between 0.71 and 
0.90. On the other hand, in FE and KH estimates more farmers had efficiency scores between 
0.21and 0.30 implying that most cereal farmers faced severe persistent productive inefficiency 
problems in the study area.  

 

Table 5. Distribution of persistent and transient efficiencies 
 

TE-Interval 
(%) 

PTE (%) TTE (%) 

FE and KH-
models 

KLH-
model

TFE-
model

OTE_KH-
model

OTE_KLH-
model 

RTE_(KH 
& KLH) 
models 

0-10 2.91 0 0 13.41 0 0 
11-20 25.34 0 0 42.72 0.36 0.12 
21-30 29.15 0 0 25.55 0.91 0.42 
31-40 19.28 0 0 12.50 4.13 0.73 
41-50 10.76 0 0.12 3.58 19.54 2.97 
51-60 6.50 0.22 0.00 1.40 50.24 10.38 
61-70 3.36 5.38 0.18 0.67 23.97 32.83 
71-80 1.12 47.09 7.40 0.12 0.85 45.33 
81-90 1.35 47.31 2.61 0.06 0 7.04 
91-100 0.22 0 89.68 0 0 0.18 
Mean  0.304 0.791 0.944 0.210 0.545 0.690
Sta. dev. 0.155 0.053 0.065 0.111 0.082 0.094
Minimum  0.054 0.567 0.427 0.020 0.105 0.141
Maximum  1.000 0.889 1.000 0.840 0.783 0.927
Yearly mean of the transient 
efficiency  

 

1999 0.964 0.213 0.550 0.695 
2004 0.958 0.195 0.523 0.661 
2009 0.941 0.215 0.559 0.707 
2015 0.918 0.210 0.541 0.684 

     Source: Author’s computation. 

 

3.2.2 Time-variant/transient technical efficiencies 

The mean transient technical efficiencies obtained from the KH, KLH and TFE models is 0.21, 
0.55 and 0.94 respectively. The result shows that there were fewer farmers with transient 
efficiency scores below 90 per cent in the TFE-model than there were in the other two models. 
The variations in transient efficiency estimates by these models are due to their underlying 
assumptions. The TFE-model assumes that inefficiency is always time-varying and controls 
for unobserved farm heterogeneity to be constant over time without considering individual 
effects. However, if a farm household is characterized by persistent individual effects, this 
becomes part of farmer-specific constant terms. Consequently, the model under-estimates 
transient inefficiency levels which result in transient efficiency scores inflating upwards.  

Unlike the TFE-model, the KH-model does not consider any time-invariant effects; it is 
associated with a farm and treats all time-invariant farm effects as inefficiencies. Hence, it 



confounds farm effects with individual persistent inefficiencies. Thus, the part of inefficiency 
persistence captured by this model is over-estimated. Consequently, the model is likely to 
produce over-estimated persistent inefficiency scores and therefore generate lower estimates 
of persistent efficiencies. But we know that OTE (which is time-variant) is a product of 
persistent and residual efficiencies. Thus, transient efficiencies in the KH-model are lower due 
to low persistent efficiency estimates. These characteristics of the KH-model, together with 
those of the TFE-model, suggest that latent farm and individual effects as unobserved in 
heterogeneity are significant in the sample and require us to reconsider our modeling to obtain 
more accurate efficiency estimates. 

Thus, believing that the true measure of efficiency may be somewhere between these extremes 
we considered a recently developed more flexible efficiency model called the GTFEM or KLH-
model which might come closer to capturing true efficiency. This model overcomes some of 
the limitations of the earlier models by decomposing overall inefficiencies into persistent and 
residual components; it also distinguishes time-invariant farm effects from persistent 
inefficiencies. Like the KH-model, the KLH-model decomposes efficiencies into persistent and 
transient components. However, the separation of persistent inefficiencies from time-invariant 
farm effects results in higher estimates of persistent inefficiencies as compared to the estimates 
in the KH model with low variations. Thus, mean transient efficiency results in the KLH-model 
are higher as compared to the KH-model and less as compared to the TFE-model. The 
frequency distribution of transient efficiencies also shows that 46 per cent of the farmers were 
operating below the mean score in the KLH-model as opposed to 60 per cent in the KH-model.  

In general, the variability in efficiency scores across the models that we considered clearly 
demonstrates the existence of significant unobserved farm/individual heterogeneity in the 
sample and should be considered in efficiency modeling and specifications. This is in line with 
the findings of Heshmati et al., (2016) and Kumbhakar et al., (2014). Besides our results also 
show that efficiency estimates vary over time. Transient efficiencies varied across years; these 
decreased during the study period; 2009 was the most efficient year and 2015 was the least 
efficient year. Concerning the patterns of efficiency ratings through time the results show that 
the level of transient efficiencies was quite low and was mostly concentrated between 0.11and 
0.20 in the KH-model and it was quite moderate and concentrated between 0.51 and 0.60 in 
the KLH-model in all the years.  

Further, to get a better picture of efficiency components in different models, we used density 
plots for them. These density plots show that the distribution of persistent efficiencies in the 
FE and KH-models was identical (Figure 1) and except for some values in the upper tail, most 
of the farmers had low levels of efficiency in so far as their persistent efficiencies are concerned. 
This was, however, not the case in the KLH-model as it provided the highest persistent 
efficiency scores, having a mean that was 50 per cent higher as compared to the FE and KH-
models with the least dispersion.  

 



 

Figure 1. Distribution of persistent technical efficiencies across models 

 

Regarding the distribution of transient efficiencies since the individual-effects are not 
considered to be inefficiencies in the TFE-model this leads to high efficiency scores (Figure 2) 
with low dispersion (Figure 3) as compared to the other two models.  

	

 

Figure 2. Distribution of transient technical efficiencies across models  

 

The distribution of transient efficiencies in the KH-model is similar to its persistent component 
but its mean is pushed back by about 10 per cent. Whereas in the KLH-model most of the 
farmers were found to have moderate levels of transient efficiency scores, lying between those 
in the TFE and KH-models (Figure 2); the scores were spread between those in the TFE-model 
(low spread) and the KH-model (high spread) (lower part of Figure 3). Similar results were 
found by Heshmati et al. (2016) and Kumbhakar et al. (2014).  

The spread of the residual efficiency component in the KH and KLH-models as a main element 
of overall efficiency was significantly higher for the persistent component as compared to the 
residual component in both the models (Figure 2). Thus, the results suggest that persistent 
inefficiencies were a bigger problem as compared residual/transient inefficiencies in the 
sampled cereal farmers.  
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Figure 3. The median, first and third quartiles (middle, bottom and top lines) of technical 
efficiencies 

 

Finally, to compare across models and explore the effects of the estimated models on the 
ranking order of farmers' technical efficiencies, we estimated Kendall's rank correlation 
coefficient between efficiency scores (Table 6). The correlation coefficients for persistent 
efficiencies between FE, KH and KLH-models were positive and high, implying that the 
models were consistent in generating similar results. Further, correlation coefficients between 
transient efficiency estimates obtained from all the models were positive, except for the KH 
and TFE-models. The KH and TFE-models had high ranking disagreements. This result is not 
surprising given the assumptions with respect to time-invariant effects. Transient efficiency 
estimates from the KLH and TFE-models, however, had a low positive correlation while the 
results from the KH and KLH-models were independent and had a positive correlation.  

 

Table 6. Kendall’s rank order correlation across models 

  TE_FE 
PTE 
_KH 

PTE 
_KLH TE_TFE OTE_KH OTE_KLH

TE_FE 0.998       
PTE _KH 0.998 0.998      
PTE _KLH 0.998 0.998 0.998     
TE_TFE -0.024 -0.024 -0.024 1.000    
OTE_KH 0.845 0.845 0.845 -0.013 1.000  
OTE_KLH 0.322 0.322 0.322 0.043 0.477 1.000

         Source: Author’s computation. 
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3.2.3 Estimates of technical efficiencies across agro-ecological zones 
For an investigation of farmers’ performance across AEZs and their position compared to a 
zone with better efficiency scores, we also give efficiency estimates by AEZs in Table 7. 
Efficiency measures in the alternative models reveal that there were systematic differences 
between AEZs and agro-ecological sub-zones (AESZs), which show the effects of 
geographical/climatic conditions on efficiencies. 

 

Table 7. Mean efficiency measures in all models by AEZs and AESZs 

AEZs AESZs 

PTE TTE 

FE & KH-
models

KLH-
model 

TFE-
model 

OTE_KH-
model 

OTE_KLH-
model 

RTE_(KH 
& KLH) 
models 

Lowland(mean)  
Hot to warm, sub-moist 
lowland  0.220 0.763 0.897 0.151 0.525 0.688 

 Wet-moist cool midland  0.201 0.750 0.990 0.139 0.516 0.689 

 Sub-moist cool midland  0.412 0.829 0.984 0.285 0.572 0.690 

 Dry-warm midland  0.319 0.804 0.901 0.221 0.557 0.693 
Midland(mean) 0.311 0.794 0.794 0.215 0.548 0.691 

 Cool highland 0.496 0.839 0.948 0.344 0.581 0.692 

 Wet-cool highland 0.278 0.786 0.971 0.190 0.539 0.685 
Highland(mean) 0.387 0.813 0.960 0.267 0.560 0.689 

    Source: Author’s computation. 

 

As one moves from a highland to lowland AEZ, the mean of technical efficiency decreases. 
This suggests that more productive efficiency is associated with an area at a higher altitude 
where the rainfall and temperature are favorable for cereal production. The low mean score 
noted in lowland areas can be attributed to several factors that act as constrains in cereal 
production notably irregularity in rainfall, high temperatures and poor soil characteristics. 
Further, when we look at the situation across AESZs or through surveyed Farmers’ 
Associations, estimates of technical efficiencies are the highest in cool highland AESZs and 
the lowest in wet-moist cool midland AESZs.  

 

4. SUMMARY, CONCLUSION and recommendations 

This paper investigated persistent and transient production efficiencies among Ethiopian cereal 
farmers in the period 1999-2015. It used a 4-error component panel data SF model (KLH-
model) to distinguish between time-invariant farm heterogeneity and persistent and transient 
inefficiency components. The results of this model were compared to the other three panel data 
SF-models in which one of the four components is missing. The models differed in their 
underlying assumptions of time-variant/invariant efficiencies and their decomposition as well 
as the separation of technical inefficiencies and farm heterogeneity effects. The TFE-model 
disentangled time-varying inefficiencies from time-invariant heterogeneity. The KLH and KH-
models distinguished between persistent and transient inefficiencies and the FE-model was 
used for estimating time-invariant efficiencies for comparison purposes. 

The first-order parameter estimates indicate that agrochemicals, labor, machinery, oxen and 
livestock significantly enhanced output, suggesting that cereal production in the study area was 
most responsive to these inputs. Coefficient of time interacted with farmland-area was positive 
and significant implying that TC was land using. Estimates of time interactions with other 
inputs were significantly negative, implying factor using TCs for these inputs. This 
consequently suggested input saving TCs. However, the overall TC was not neutral because 



some production factors significantly changed over time. Estimates of production elasticities 
indicate that each input contributed significantly in enhancing cereal production levels. The 
results further show that cereal farming was technologically regressed at an increasing rate and 
this was exhibited in an increasing returns to scale. Estimated efficiency results across the 
models in general, illustrate significant variations in efficiency estimates across the models 
showing that efficiency estimations were sensitive to a model’s specifications. The results also 
confirm the assumption of significant farm heterogeneity in the sample which was 
demonstrated by the significant over-estimates of efficiency in the TFE-model and under-
estimates of efficiency in the KH-model. The KLH-model overcame these problems by 
splitting time-persistent noise into farm-specific and persistent inefficiency effects in addition 
to its efficiency decomposition into persistent and transient components. Consequently, this 
model provided a very dissimilar estimate of overall efficiency levels in the TFE and KH-
models reducing downward and upward biases. 

Kendall's rank correlation coefficients showed that the FE, KH and KLH-models were 
generating similar and consistent persistent efficiency measures. Further, the correlation 
between estimates of transient efficiencies obtained from all the models was positive, except 
for KH and TFE-models. The transient technical efficiency estimates obtained from the KLH 
and TFE-models had low positive ranks, while the results based on the KH and KLH-models 
had large positive ranks. The results also show differences in efficiency levels in AEZs and 
AESZs. This shows the impact of geographical/climatic conditions on efficiency. As one 
moves from highland to lowland AEZs technical efficiencies decrease. Further, considering the 
situation across AESZs or through surveyed PAs, efficiency estimates were found to be the 
highest in cool highland and sub-moist, cool midland AESZs and the lowest in hot to warm, 
sub-moist lowland and wet-moist cool midland AESZs. The results confirm that in general the 
farmers were unable to achieve full production efficiency. The wide variations in estimates of 
technical efficiencies across farmers and over time gives an indication that most of the farmers 
were still using their resources inefficiently in the production process and there still existed 
wide room for improving cereal production by improving the current levels of efficiency.  

These findings are important and can be used to initiate government policy options when 
planning agricultural policies tailored at supporting various AEZs across the country. The study 
therefore recommends policies that improve measures that reduce persistent inefficiencies, 
improve the supply of agricultural inputs and policies that meet the needs of farmers and suit 
the peculiarities of agro-ecological zones. 
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