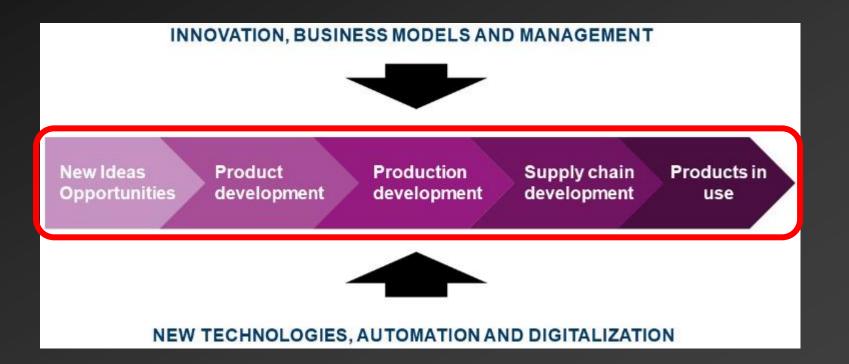
SE2: Sustainable materials, manufacturing, and cast components

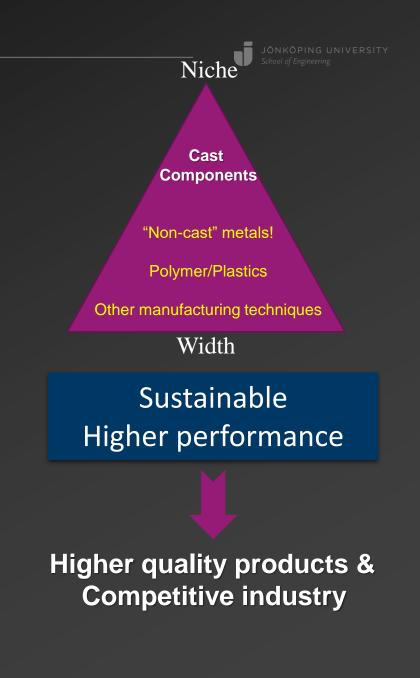

Ehsan Ghassemali; Docent; SE2 leader 2023-04-20

Current status

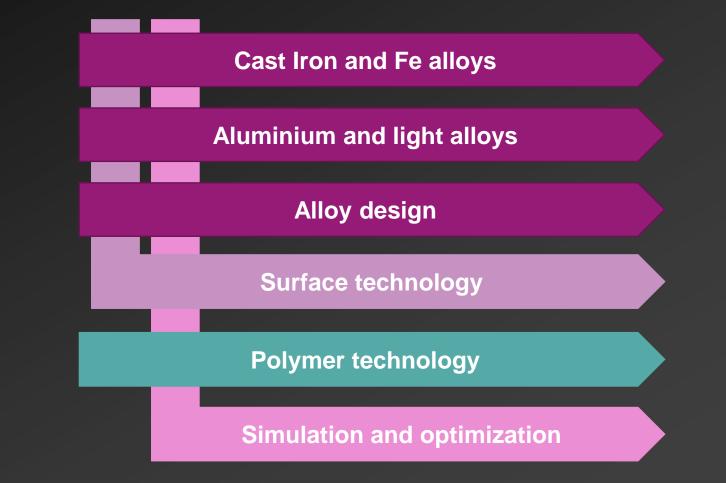
Positioning within SPARK

Research and education focus

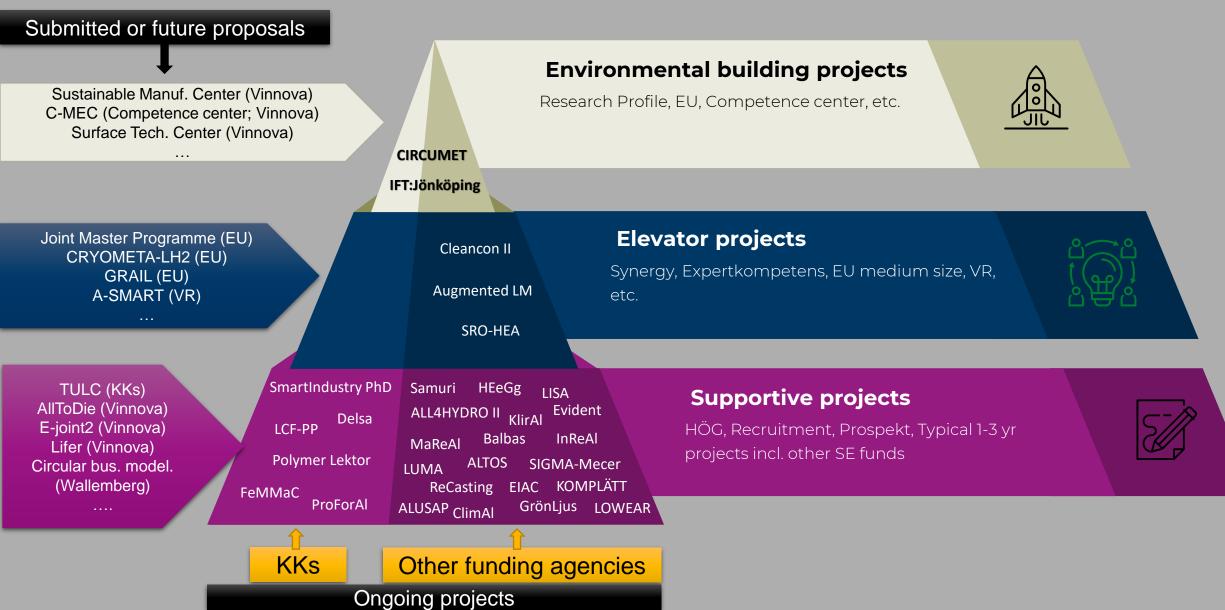
Advanced materials

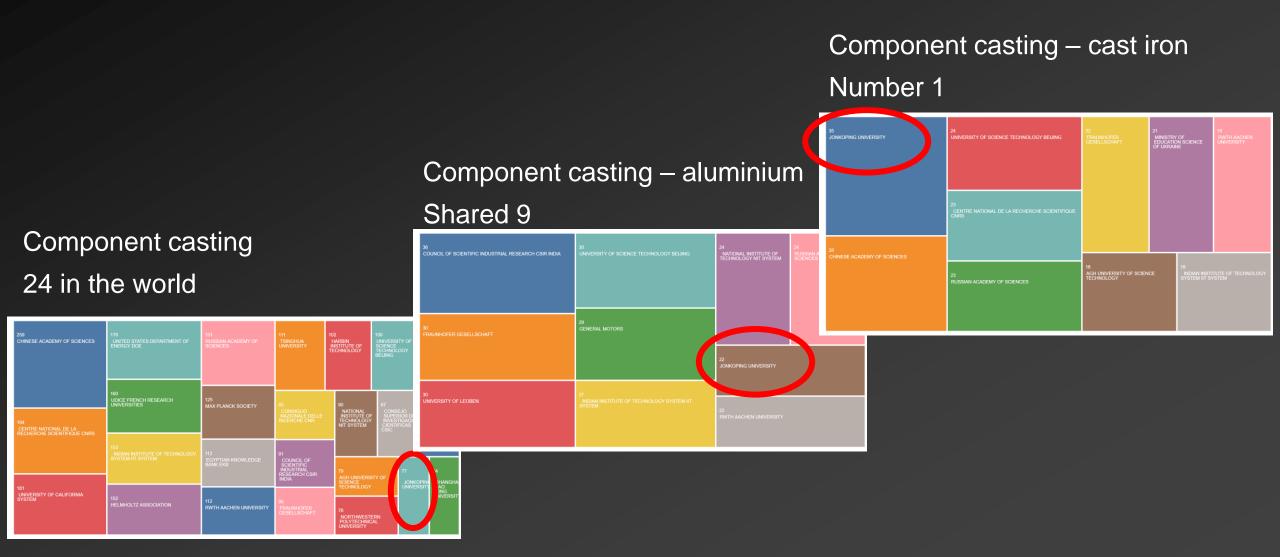

are **high value-added** materials that **perform better** than conventional materials, yielding **high-quality products** that, for example, are lighter, have broader service temperature ranges, are multifunctional, or have improved life-cycle performance.

Advanced manufacturing

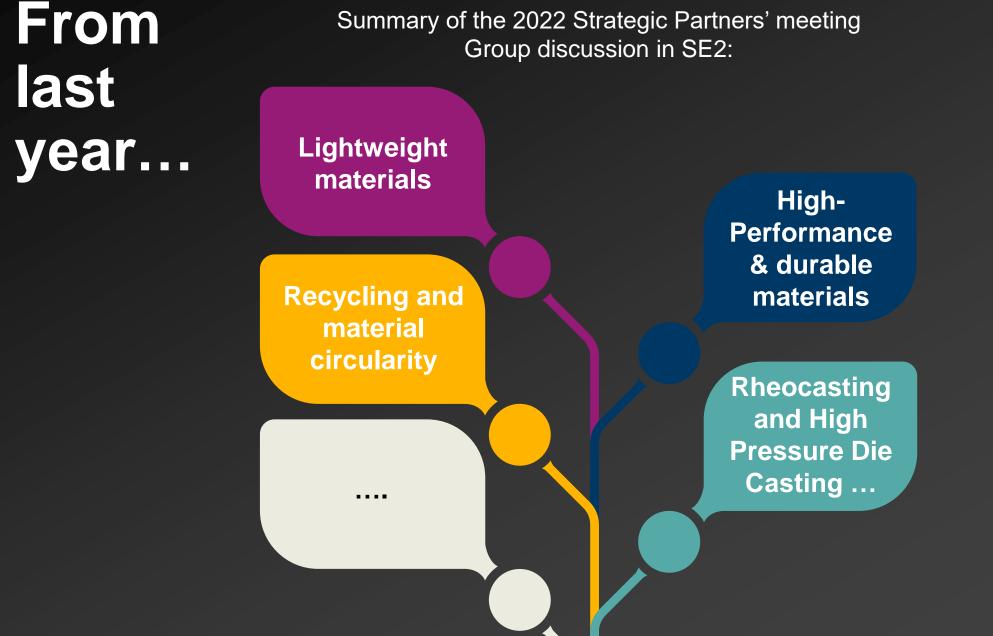

to produce **higher quality products** in a **more resource-efficient approach** considering the use of energy and materials; or processes that are more **flexible and innovative**.

Optimization of components

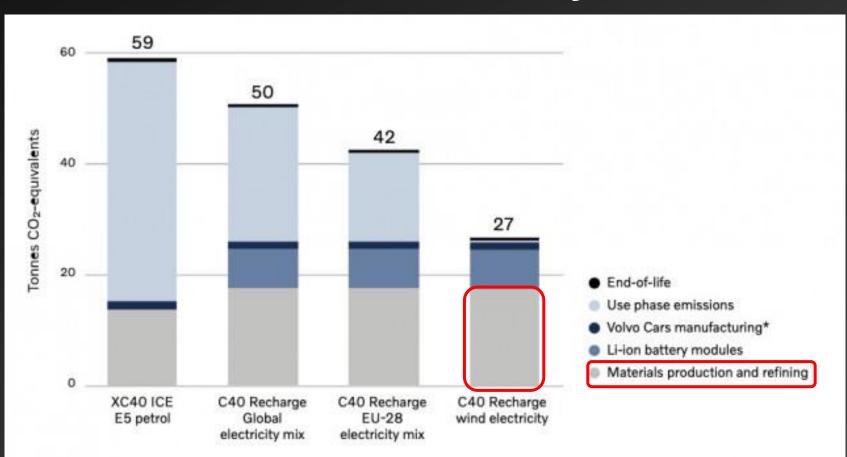

are processes that link the material to the manufacturing to the design tools in a continuous feedback circle



Research directions



Ongoing projects and future plans (until Q3, 2022)



Future perspective

Towards a carbon-neutral society ...?

*Volvo Cars manufacturing includes both factories as well as inbound and outbound logistics.

Figure 5. Carbon footprint for C40 Recharge and XC40 ICE with different electricity mixes used for the C40 Recharge. Results are shown in tonnes CO₂-equivalents per functional unit (200,000km total distance, rounded values).

To fight climate challenges in materials & manufacturing:

Three themes of:

- > Circularity
- High-performance materials and components
- Energy and resource-efficient manufacturing technology

Ongoing and upcoming initiatives (taken from last year's roadmap)

By 2025	By 2030
Develop a <u>research school</u> together with strategic	Develop tolerant cast materials for re-use and
industrial and academic partners	circularity in component casting
Involve in or lead the formation of a "Casting"	Establish <u>courses and educational packages</u>
Strategic Innovation Programme (SIP) or similar	related to circularity, recycling and sustainability
	in materials and manufacturing
Develop larger efforts (e.g. Synergy proposal(s))	Establish and develop a national testbed for
to integrate different topics for comprehensive	sustainable casting technology together with
research to improve sustainability and material	strategic industrial and academic partners
circularity in component casting	
Develop joint PhD/Master programmes together	Have experience in developed competence in
with European partners	European project management and consolidation
Continue expanding the research and educational	•••
activities in the field of polymer	

Ongoing and upcoming initiatives

Research

- IFT: Jönköping (Research profile, KKs ongoing)
 - sustainable design and production of cast iron components
- Competence center application (Vinnova)
 - Circular Metals Engineering Center (CMEC; led by Chalmers submitted)

Education and lifelong learning

 Advance school on circular metal components for the Swedish manufacturing industry (CIRCUMET; KKs – 30 MSEK, 6 yrs)

International effort (research education)

- European joint master programme (on lightweight mobility)
- A few EU research project applications on

Ongoing and upcoming initiatives

How your company acts for sustainability in materials and manufacturing? And How do you see yourself in our ongoing and future (tentative) agenda? What is missing in our roadmap that should be included?

....

Synergy initial idea

- Advancing the recycling of Al components/scrap and its effect on component integrity
 - Melting and handling
 - Quality assessment
 - Efficient melt handling
 - Alloying principles and reduced Si content
 - HPDC
 - Process optimisation with sensing
 - In-process quality asscertion
 - Al driven loop for dynamic process adjustment
 - Post processing
 - Oxides influence
 - Heat treatment
 - Coating processes
 - Trace elements
 - Heat treatment responce
 - Coating process influence

Sustainability assessment Energy efficiency Alloying element effects Effects from gating and rejects CO2 emissions Increased amount of secondary material Material resource efficiency Less in-house circulation Reduced additives / agents Reduced needs of alloying additins

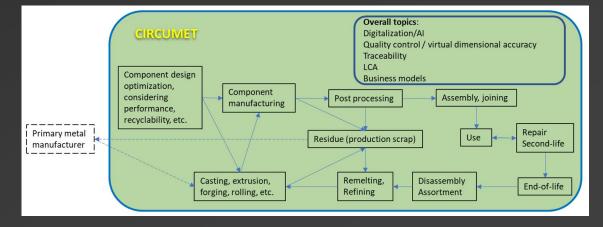
Synergy initial idea

- Three action areas and one umbrella distinct areas
 - Alloy development for Melting and Handling
 - Light alloys and AL processing
 - Surface technology for Post processing
 - All providing data for durability and a sustainability analysis to initiate a deeper dive to incorporate sustainability into our research areas

A PhD student (+ a postdoc?); integrating these areas within the project 10 MSEK for 4 yrs Application submission: May 2024 Project start: Spring 2025

Synergy initial idea – your input

•


. . .

- What industrial needs do you see for future secondary light alloys?
- What knowledge/technical gap do you recognize in this field?
- Any specific application/area you would target as a focus in such constellation?

Objectives and areas of focus

• Objectives

- Create a joint effort for developing 80-90 credits courses in advanced level on the topic of climate action in the metal component manufacturing industry
- Develop flexible pedagogical methods, and innovative admission/validation routines for effective competence supply for the professional in industry
- > Pilot-run the developed courses and accordingly fine-tune the methodologies and contents if needed
- \gg Plan and develop the industrial research school proposal on the climate action for the metal industry
- Fighting climate challenge in three themes:
 - Circularity
 - > High-performance materials/components
 - > Energy/resource-efficient manufacturing tech.

Partners and their roles

Node partners

Metal industry related associations

Marketing & outreach to other stakeholders

Companies

Large companies and SMEs covering the entire value chain of metal component manufacturing, incl.:

- End-users ranging from automotive and aerospace, to household and gardening sectors
- Metal component manufacturing sector
- Material supplier and recycling sector

Content setting, Guest lectures, Professionals taking the courses, Marketing & outreach

Universities and RI

Key Swedish players in the field;

- A wide range of competence, incl.:
- Manufacturing : Casting, Additive Manuf., Forming, Welding, etc.
- Advanced characterization
- LCA, Data analysis, etc.

 Coordinators, Content creation and lectures, Recruitment, Admission, Examination, Execution, etc.

Courses within the three themes

Theme	Main topic	Modules (sub-topics) in each course	New courses or renewal of existing courses	Credits	Course coordinator	Guest lecturers, industrial contribution										
	Introduction to Sustainability and Circularity	 Climate Action, Circularity, Decoupling & 4Rs Ethical codes, responsible R&I Gender balance and inclusion in circularity MUD, Scrap, Closed loop and value retention 	New	7.5	Chalmers	RISE, Volvo, Scania, Husqvarna	đ			New courses or			Guest			
Circularity	Material development for circularity and future trends	 Designing tolerant alloys Material processing window Sustainability and commercialisation aspects in 	Substantial renewal & update	7.5	Chalmers	JTH, Volvo, Scania, Stena, Ovako	materials and components	Main topic Metallurgy of cast	Modules (sub-topics) in each course - Physical metallurgy and	renewal of existing courses Substantial	Credits	Course coordinator JTH	lecturers, industrial contribution Chalmers,			
	Component design for disassembly and recyclability	material design - Joining for disassembly - Sustainable welding design - Cast component design for recyclability	New	7.5	Chalmers	HV, JTH, RISE, GKN, Sandvik,		a	alloys	alloying elements - Impact of melt cleanliness - Impact of recycling and material value retention	renewal & update			Volvo, Comptech, Stena, Ovako		
	Science of remelting	 Melting and melt handling of non-ferrous alloys Melting and melt handling of 	New	5	НТ	Husqvarna RISE, AGES, Comptech, Ovako		Assessment and analysis of recycled materials and components	 Mechanical and Chemical characterizations Melt quality assessment Failure Analysis 	Substantial renewal & update	7.5	ЛН	Chalmers, RISE, Stena, Scania			
	Applied Life Cycle Analysis (LCA)	ferrous alloys - LCA methodologies - Application of LCA in metal component manufacturing	New	5	Scania (JTH)	JTH, Chalmers, Sandvik		mater	materi	Modelling and simulation for circular metal component manufacturing	 Component Casting Sheet metal components Crash/Impact testing of components, durability evaluations 	Substantial renewal & update	7.5	Chalmers	RISE, JTH, Volvo, Comptech, GKN	
							High-Performance	Design for minimal material utilization	 Topology optimization Quality process control, robust processing and design using CAE 	Substantial renewal & update	5	JTH	Chalmers, Volvo, GKN			
							High	Functional materials selection and product innovation	 Materials Selection/Design Materials theory Phase transformation/ thermodynamics 	Substantial renewal & update	7.5	Chalmers	JTH, Ovako	Theme	Mair Susta	
														icient logy	manu meta	

- In total 87.5 credits
- Content & course list can be fine-tuned in the 1st year of the project
- > Each course is designed in 2-3 modules, each being 2.5 credits

ko	Theme	Main topic	Modules (sub-topics) in each course	New courses or renewal of existing courses	Credits	Course coordinator	Guest lecturers, industrial contribution
	Energy and resource-efficient manufacturing technology	Sustainable manufacturing for metal components	 Sustainable and energy efficient Casting Sustainable and energy efficient AM Sustainable and energy efficient Joining 	New	7.5	ΗV	JTH, Chalmers, RISE, GKN, Sandvik, Comptech, Scania
		Data analysis-led process optimization	 Data quality, process capability and statistical thinking for industrial problem solving Design of Experiments Big Data and AI/ML 	New	7.5	ΗΤ	Chalmers, RISE, GKN
	е с	Introduction to principles of Industry 4.0 & 5.0	 Digitalization of manufacturing Digital twins 	New	5	RISE (HV)	JTH, Chalmers, Scania

Work package and time plan

- WP0: Project management (lead: JTH; Ehsan Ghassemali, Deputy leader: Chalmers, Johan Ahlström)
- WP1: Survey for data gathering and fine-tuning course list (Lead: RISE; Marie Fredriksson)
- WP2: Methodology and pedagogical development (lead: JTH; Madelene Zetterlind)
- WP3: Course development and quality assurance (lead: Chalmers; Emmy Yu Cao)
- WP4: Marketing and communication (lead: JTH; Linda Bergqvist)
- WP5: Recruitment, admission, and validation (lead: JTH; Nils-Eric Andersson)
- WP6: Pilot run and sustaining the courses (lead: Chalmers; Fang Liu)
- WP7: Co-Production (lead: Volvo Cars; Fredrik Edgren,
- WP8: Developing affiliated industrial research school proposal (lead: Chalmers; Lars Nyborg)

Kick-off meeting: May 30-31 Elite Stora Hotellet Jönköping

Your input...

How do you work with competence development in the field of sustainability today? Any specific topic missing in our list of courses? How would you contribute to our courses? e.g. students, case studies, interviews, etc. Any specific input for the format of running courses?

•••

JÖNKÖPING UNIVERSITY

School of Engineering