

COURSE SYLLABUS Optimization Driven Design, 7.5 credits

Optimeringsdriven design, 7,5 högskolepoäng

Course Code: Confirmed by:	TODS29 Dean Dec 1, 2018	Education Cycle: Disciplinary domain:	Second-cycle level Technology
Valid From: Version:	Jan 1, 2019 1	Subject group: Specialised in: Main field of study:	MT1 A1F Product Development

Intended Learning Outcomes (ILO)

After a successful course, the student shall;

Knowledge and understanding

- show familiarity with basic optimization algorithms and their use.

- display knowledge about how structural and design optimization can be used during the design process

- demonstrate comprehension of how optimization driven design is used in the development of sustainable products.

Skills and abilities

- demonstrate the ability to use topology optimization in structural analyses

- demonstrate the ability to perform sensitivity analyses.

Judgement and approach

- demonstrate the ability to perform a major optimization driven design project.

Contents

The course includes the following elements:

- Introduction to optimization driven design; linear programming.

- Unconstrained optimization; the steepest descent method, Newton's method, secant methods.

- Constrained optimization; Karush-Kuhn-Tucker conditions, quadratic programming, active set strategies, penalty and barrier function methods.

- Convex optimization and variational inequalities, with applications in mechanical engineering.
- Structural optimization; distributed parameter systems, shape and topology optimization.

Type of instruction

Lectures, computer assignments, given in English.

The teaching is conducted in English.

Prerequisites

Passed courses 180 credits in first cycle, at least 90 credits within the major subject Mechanical Engineering, and 21 credits Mathematics, and completed course Non-linear Finite Element Analysis, 6 credits. Proof of English proficiency is required (or the equivalent).

Examination and grades

The course is graded 5,4,3 or Fail.

Registration of examination:

Name of the Test	Value	Grading
Written examination	5 credits	5/4/3/U
Laboratory work	2.5 credits	U/G

Course literature

Lecture notes distributed digitally.