Anders Andersson

Senior Lecturer mathematics
Doctor of Philosophy


Change your information

Boards, committees etc.


Andersson, A., Nilsson, B., Biro, T. (2016). Fourier methods for harmonic scalar waves in general waveguides Journal of Engineering Mathematics, 98(1), 21-38. More information
Andersson, A. (2009). Modified Schwarz-Christoffel mappings using approximate curve factors Journal of Computational and Applied Mathematics, 233(4), 1117-1127. More information
Andersson, A. (2008). A modified Schwarz-Christoffel mapping for regions with piecewise smooth boundaries Journal of Computational and Applied Mathematics, 213(1), 56-70. More information
Andersson, A. (2008). Schwarz-Christoffel Mappings for Nonpolygonal Regions SIAM Journal on Scientific Computing, 31(1), 94-111 Philadelphia: Society for Industrial and Applied Mathematics . More information

Doctoral thesis

Andersson, A. (2009). Numerical conformal mappings for waveguides (Doctoral thesis, Växjö: Växjö University Press). More information

Book chapter

Andersson, A. (2010). Numerical Conformal Mappings for Waveguides. In: Computational Mathematics: Theory, Methods and Applications Hauppauge NY, USA: Nova Science Publishers More information

Conference paper

Andersson, A., Nilsson, B. (2009). Electro-Magnetic Scattering in Variously Shaped Waveguides with an Impedance Condition. More information
Andersson, A. (2009). On the curvature of an inner curve in a Schwarz--Christoffel mapping. More information
Nilsson, B., Augey, R., Andersson, A. (2009). Acoustic waves in a mean flow duct with varying boundary. Reston, Va.: < American Institute of Aeronautics and Astronautics, More information
Andersson, A., Nilsson, B. (2008). Acoustic Transmission in Ducts of Various Shapes with an Impedance Condition. Melville: American Institute of Physics, More information
Andersson, A. (2006). Using a zipper algorithm to find a conformal map for a channel with smooth boundary. More information

Licentiate thesis

Andersson, A. (2006). Numerical Conformal Mappings for Regions Bounded by Smooth Curves (Licentiate thesis, Växjö: Matematiska och systemtekniska institutionen, Växjö universitet). More information