Predictive Analysis with Machine Learning 7.5 credits
Course Contents
This course is an introduction to machine learning and its application to make decisions in business and economics. The machine-learning methods are introduced by starting from a regression perspective and all methods covered are related to the standard regression analysis. The methods covered are regression analysis and classification (starting from the logistic regression-model). We include linear models, non-linear models and tree-based models. We also discuss regularization techniques such as lasso, ridge regression and elastic nets. Further, model selection techniques including information criteria and cross-validation are covered. We also cover bootstrapping methodology, which is a powerful tool for statistical inference.
**Connection to Research and Practice**
This course covers predictive modelling using machine-learning techniques. This is a fast-growing branch of statistics where analysis of big data is used for predictive and forecasting purposes. Most organizations today use big data for their decision making. The statistical methods introduced in this course enables government organizations, businesses etc. to use the data they collect in a strategic way to improve their operations. Further, they can be used in economic research directly to draw conclusions about unknown economic characteristics in the society.
Prerequisites
The applicants must hold the minimum of a bachelors's degree in Business Administration or Economics equal to 180 credits including 15 credits in Mathematics/Statistics/Econometrics.
Level of Education: Second cycle
Coursecode/Ladok code: JPAR22
The course is conducted at: Jönköping International Business School
Label | Value |
---|---|
Type of course | Programme instance course |
Study type | Normal teaching |
Semester | Autumn 2025: week 36 – week 43 |
Rate of study | 100% |
Language | English |
Location | Jönköping |
Time | Day-time |
Tuition fees do NOT apply for EU/EEA citizens or exchange students | 17500 SEK |
Syllabus (PDF) | |
Application code | HJ-J4131 |