Anders Andersson
Filosofie doktor
Nämnder, råd m.m.
Tekniska Högskolan -
Forskarkollegium
, Ledamot
Artikel
Andersson, A., Nilsson, B., Biro, T.
(2016).
Fourier methods for harmonic scalar waves in general waveguides Journal of Engineering Mathematics, 98(1), 21-38.
More information
Andersson, A.
(2009).
Modified Schwarz-Christoffel mappings using approximate curve factors Journal of Computational and Applied Mathematics, 233(4), 1117-1127.
More information
Andersson, A.
(2008).
A modified Schwarz-Christoffel mapping for regions with piecewise smooth boundaries Journal of Computational and Applied Mathematics, 213(1), 56-70.
More information
Andersson, A.
(2008).
Schwarz-Christoffel Mappings for Nonpolygonal Regions SIAM Journal on Scientific Computing, 31(1), 94-111 Philadelphia: Society for Industrial and Applied Mathematics .
More information
Doktorsavhandling
Andersson, A.
(2009).
Numerical conformal mappings for waveguides
(Doctoral thesis, Växjö:
Växjö University Press).
More information
Antologibidrag
Andersson, A.
(2010).
Numerical Conformal Mappings for Waveguides.
In:
Computational Mathematics: Theory, Methods and Applications
Hauppauge NY, USA: Nova Science Publishers
More information
Konferensbidrag
Andersson, A., Nilsson, B.
(2009).
Electro-Magnetic Scattering in Variously Shaped Waveguides with an Impedance Condition.
More information
Andersson, A.
(2009).
On the curvature of an inner curve in a Schwarz--Christoffel mapping.
More information
Nilsson, B., Augey, R., Andersson, A.
(2009).
Acoustic waves in a mean flow duct with varying boundary.
Reston, Va.:
< American Institute of Aeronautics and Astronautics,
More information
Andersson, A., Nilsson, B.
(2008).
Acoustic Transmission in Ducts of Various Shapes with an Impedance Condition.
Melville:
American Institute of Physics,
More information
Andersson, A.
(2006).
Using a zipper algorithm to find a conformal map for a channel with smooth boundary.
More information
Licentiatavhandling
Andersson, A.
(2006).
Numerical Conformal Mappings for Regions Bounded by Smooth Curves
(Licentiate thesis, Växjö:
Matematiska och systemtekniska institutionen, Växjö universitet).
More information